Module #4
First, I entered the data and created a data frame:
Freq <- c(0.6, 0.3, 0.4, 0.4, 0.2, 0.6, 0.3, 0.4, 0.9,
0.2)
bloodp <- c(103, 87, 32, 42, 59, 109, 78, 205, 135, 176)
first <- c("bad", "bad",
"bad", "bad", "good", "good",
"good", "good", NA, "bad")
second <- c("low", "low",
"high", "high", "low", "high",
"high", "high", "high", "high")
finaldecision <- c("low", "high",
"low", "high", "low", "high",
"low", "high", "high", "high")
first <- factor(first, levels = c("bad",
"good"))
second <- factor(second, levels = c("low",
"high"))
finaldecision <- factor(finaldecision, levels =
c("low", "high"))
data <- data.frame(Freq, bloodp, first, second,
finaldecision)
Then created boxplots:
par(mfrow = c(1, 2), mar = c(3, 3, 1, 1))
boxplot(Freq ~ first, data = data, main = "Boxplot of
'first'", col = c("red", "blue"))
boxplot(Freq ~ second, data = data, main = "Boxplot of
'second'", col = c("red", "blue"))
And finally, created histograms:
par(mfrow = c(1, 1), mar = c(5, 4, 4, 2))
hist(Freq[data$first == "bad"], main =
"Histogram of Frequency 1", xlab = "Frequency")
hist(Freq[data$first == "good"], main =
"Histogram of Frequency 2", xlab = "Frequency")
There's a wide range of low and high blood pressures. The side-by-side boxplots and histograms show the range of values and doctor's ranking of 'good' or 'bad'.
Comments
Post a Comment