Module #5

 2/11/24


For this assignment, I defined the matrices A and B, then attempted to find their inverse and determinant using the solve() and det() functions. I got these errors, which I believe is because is singular and therefore not invertible. 


> A <- matrix(1:100, nrow=10)
> B <- matrix(1:1000, nrow=10)
> solve(A)
Error in solve.default(A) : 
  Lapack routine dgesv: system is exactly singular: U[6,6] = 0
> det(A)
[1] 0
> A <- matrix(1:100, nrow=10)
> B <- matrix(1:1000, nrow=10)
> solve(A)
Error in solve.default(A) : 
  Lapack routine dgesv: system is exactly singular: U[6,6] = 0
> det(A)
[1] 0
> solve(B)
Error in solve.default(B) : 'a' (10 x 100) must be square
> det(B)
Error in determinant.matrix(x, logarithm = TRUE, ...) : 
  'x' must be a square matrix
> A <- matrix(1:100, nrow=10)
> B <- matrix(1:1000, nrow=10)
> solve(A)
Error in solve.default(A) : 
  Lapack routine dgesv: system is exactly singular: U[6,6] = 0
> det(A)
[1] 0
> solve(B)
Error in solve.default(B) : 'a' (10 x 100) must be square
> det(B)
Error in determinant.matrix(x, logarithm = TRUE, ...) : 
  'x' must be a square matrix

Comments