Module #5
2/11/24
For this assignment, I defined the matrices A and B, then attempted to find their inverse and determinant using the solve() and det() functions. I got these errors, which I believe is because is singular and therefore not invertible.
> A <- matrix(1:100, nrow=10) > B <- matrix(1:1000, nrow=10) > solve(A) Error in solve.default(A) : Lapack routine dgesv: system is exactly singular: U[6,6] = 0 > det(A) [1] 0 > A <- matrix(1:100, nrow=10) > B <- matrix(1:1000, nrow=10) > solve(A) Error in solve.default(A) : Lapack routine dgesv: system is exactly singular: U[6,6] = 0 > det(A) [1] 0 > solve(B) Error in solve.default(B) : 'a' (10 x 100) must be square > det(B) Error in determinant.matrix(x, logarithm = TRUE, ...) : 'x' must be a square matrix > A <- matrix(1:100, nrow=10) > B <- matrix(1:1000, nrow=10) > solve(A) Error in solve.default(A) : Lapack routine dgesv: system is exactly singular: U[6,6] = 0 > det(A) [1] 0 > solve(B) Error in solve.default(B) : 'a' (10 x 100) must be square > det(B) Error in determinant.matrix(x, logarithm = TRUE, ...) : 'x' must be a square matrix
Comments
Post a Comment